blob: 4fd3091dd247d3946a68e73aab5e206e01d8b652 [file] [log] [blame] [edit]
package samplestats
import (
"math"
"github.com/aclements/go-moremath/stats"
"go.skia.org/infra/go/paramtools"
"go.skia.org/infra/go/util"
"go.skia.org/infra/perf/go/ingest/parser"
)
// defaultAlpha is the default value to use if Config.Alpha is not set.
const defaultAlpha = 0.05
// Test is the kind of statistical test we are doing.
type Test string
const (
// UTest is the Mann-Whitney U test.
UTest Test = "utest"
// TTest is the Two Sample Welch test.
TTest Test = "ttest"
)
// Config controls the analysis done on the samples.
type Config struct {
// Alpha is the p-value cutoff to report a change as significant. If 0 then
// the default value of 0.05 is used.
Alpha float64
// Order is used to sort the results. If none is supplied then results are
// sorted by Delta.
Order Order
// IQRR, if true, causes outliers to be removed via the Interquartile Rule.
IQRR bool
// All, if true, returns all rows, even if no significant change was seen
// for a now. If false then only return rows with significant changes.
All bool
// Test is the kind of statistical test to do. Defaults to UTest.
Test Test
}
// Result is the resulting calculations returned from Analyze.
type Result struct {
// Rows, with one Row per result.
Rows []Row
// Skipped is the number of results we skipped, because either we couldn't
// calculate the statistics, or there wasn't data in both 'before' and
// 'after'.
Skipped int
}
// Row is a single row in the results.
type Row struct {
// Name of sample, i.e. its trace name.
Name string
// The full set of Params for the trace.
Params paramtools.Params
// Samples are the metrics for both samples, the first is 'before', the
// second is 'after'. See Analyze().
Samples [2]Metrics
// The change in mean between before and after samples, as a percent. I.e.
// from -100 to 100. This will be NaN if no significant change is found
// between the samaple.
Delta float64
// P is p-value for the specified test for the null hypothesis that the
// samples are from the same population.
P float64
// Note of any issues that arose during calculations.
Note string
}
// Analyze returns an analysis of the samples as a slice of Row.
func Analyze(config Config, before, after map[string]parser.Samples) Result {
ret := []Row{}
skipped := 0
allTraceIDs := util.NewStringSet()
for traceID := range before {
allTraceIDs[traceID] = true
}
for traceID := range after {
allTraceIDs[traceID] = true
}
for _, traceID := range allTraceIDs.Keys() {
beforeSamples, ok := before[traceID]
if !ok {
skipped += 1
continue
}
afterSamples, ok := after[traceID]
if !ok {
skipped += 1
continue
}
beforeMetrics := calculateMetrics(config, beforeSamples)
afterMetrics := calculateMetrics(config, afterSamples)
// Conpute the P value between the samples.
p := 1.0
note := ""
if config.Test == UTest || config.Test == "" {
mwResults, err := stats.MannWhitneyUTest(beforeMetrics.Values, afterMetrics.Values, stats.LocationDiffers)
if err != nil {
note = err.Error()
} else {
p = mwResults.P
}
} else {
wtResult, err := stats.TwoSampleWelchTTest(stats.Sample{Xs: beforeMetrics.Values}, stats.Sample{Xs: afterMetrics.Values}, stats.LocationDiffers)
if err != nil {
note = err.Error()
} else {
p = wtResult.P
}
}
// Compute the delta based on the given p and alpha values.
delta := math.NaN()
alpha := config.Alpha
if alpha == 0 {
alpha = defaultAlpha
}
if p < alpha {
delta = ((afterMetrics.Mean / beforeMetrics.Mean) - 1) * 100
} else if !config.All {
continue
}
ret = append(ret, Row{
Name: traceID,
Delta: delta,
P: p,
Samples: [2]Metrics{beforeMetrics, afterMetrics},
Note: note,
Params: beforeSamples.Params,
})
}
// Sort the rows.
if len(ret) > 0 {
if config.Order != nil {
Sort(ret, config.Order)
} else {
Sort(ret, ByDelta)
}
}
return Result{
Rows: ret,
Skipped: skipped,
}
}